
EverydayTasks

Group 13:

Richie Yoseph Wijaya - 1906355812

Rodriguez Breil Soenoto - 1906355592

COMPUTER ENGINEERING

FACULTY OF ENGINEERING

UNIVERSITAS INDONESIA

TABLE OF CONTENTS

TABLE OF CONTENTS 2

I. INTRODUCTION 5
1.1 Background 5
1.2. Project Aim 5
1.3. Literature Review 6
1.4. Similar Competitors 6

1.4.1 Trello 6
1.4.2 Google Calendar 6
1.4.3 Kanboard 7

1.5. Functions/Module 7
1.5.1 Activities 7
1.5.2 Task List 7
1.5.3 Projects 7
1.5.4 Dashboard 7

1.6. Tools 7
1.6.1 PHP 7
1.6.2 MariaDB 8
1.6.3 Figma 8

1.7. Resources 8
1.7.1 NGINX 8
1.7.2 Ubuntu and Windows 8
1.7.3 Heroku 9

1.8. Risk Analysis 9
1.8.1 Software 9
1.8.2 Tools 9

Programming Language 9
Database 10

1.8.3 Resources 10
Server 10
Operating Systems 10
Cloud 11

II. PROJECT MANAGEMENT 12
2.1 Members 12

2

2.1.1 Richie Yoseph Wijaya 12
2.1.2 Rodriguez Breil Soenoto 12

2.2 Project Management 13
Structure 13

III. PROJECT PLAN 14
3.1. Project Schedule 14
3.2 Risk Analysis 16
3.3 Project Design 17

3.3.1 Use Case 17
3.3.2 State 18
3.3.3 Activity 18
3.3.4 Deployment 19
3.3.5 Component 19
3.3.6 Class 20

IV. IMPLEMENTATION 21
4.1 Overview 21

4.1.1 API 21
4.1.2 GUI 21

4.2 Activities 22
4.2.1 API 22
4.2.2 GUI 23

4.3 Tasks 25
4.3.1 API 25
4.3.2 GUI 27

4.4 Projects 28
4.4.1 API 28
4.4.2 GUI 28

V. TESTING METHODS 29
5.1 Introduction 29

5.1.1 Objectives 29
5.1.2 Team Members 30
5.1.3 Scope 30

5.2 Assumptions / Risks 31
5.2.1 Assumptions 31
5.2.2 Risks 31

5.3 Test Approach 32

3

5.3.1 Test Automation 32
5.3.2 Test Environment 33

5.4 Planned Deliverables 34

VI. USER MANUAL 35
6.1 Introduction 35
6.2 Basic Concepts 35
6.3 Operations 36

VII. USER SURVEY 47
7.1 Questions 47

7.1.1 Application Functionality 47
7.2.2 User Satisfaction 50
7.2.3 Suggestions 50

7.2 Results 50
7.2.1 Functionality 51
7.2.2 Satisfaction 52
7.2.3 Suggestions 53

VIII. CONCLUSION 55
8.1 Conclusion 55
8.2 Resources 55

REFERENCES 57

4

CHAPTER I

INTRODUCTION

1.1 Background

The Covid-19 pandemic has made the Internet even more essential for work and education.

As a result, various activities may be done at the same time, and it can be hard to keep track

of everything that needs to be done for one day. This is especially apparent when dealing with

multiple calendars that need to be tracked.

Outside of work and education, productivity may decrease due to outdoor restrictions.

The decreased productivity is caused by the limited activities a person may do in a day,

outside of assignments or work. As a result, one’s life may be disorganized, negatively

impacting one’s motivation and thus output.

In order to solve disorganization, one could maintain a short list of what was done and

what to be done for a certain day, or for a certain week. However, since most people’s time

during the pandemic is spent in front of a digital screen, it would then be more practical to

implement a solution that uses it. People may use productivity apps to help organize daily

tasks.

Most productivity apps, including to-do apps and calendars, only give statistics on

how many activities left are to be done soon. While they provide an easy way for users to

track them, it isn’t enough to gauge daily productivity. Journals or diaries may help, but it

will not be very practical to look at each entry and quickly determine when someone is the

most productive.

1.2. Project Aim

Our project proposes an activity record format. Users may write short descriptions of what

they have done after they have done a certain activity, and it will be automatically recorded.

As the user adds records every day, a user’s productivity may be easily assessed daily,

weekly, monthly, or over other time periods.

5

Our project will not simply record activities, but it will also record to-dos as well as

its associated activity. In contrast, most to-do applications simply let the user mark an activity

as done by simply clicking on a check box. This design allows the user to keep track of tasks

as well as ensure they have done them, and to distinguish between a task that was cancelled

and one that is actually done.

This project should ideally run across multiple devices, and across different platforms,

so that the user may handily access it anywhere. For that, an ideal solution would be to

implement the project as a web application. Web applications can fulfill this requirement, as

they only need a web browser to access them. Most devices currently in use today have web

browsers. Creating web applications, therefore, would reduce the work needed for the project

to be cross-platform.

1.3. Literature Review

Personal productivity varies in measurement, both qualitatively and quantitatively. An

individual’s factors in measuring productivity will differ on another’s, depending on what

they do or what they work in. One common way of measuring personal productivity uses a

two step process - time tracking and measuring output[1]:

Time tracking is the practice of recording an individual’s activities throughout the day.

This may be done on an hourly basis, or after every activity is done. Because it can be used to

track break times versus work times, time tracking functions as a reference point for an

individual to make changes regarding his daily life.

Measuring output refers to creating a set of goals and then measuring productivity

from how many goals that are completed. This may be done using a to-do list, in which the

individual checks off tasks in the list that are completed. This may result in an incentive to try

and complete many tasks in a day.

1.4. Similar Competitors

1.4.1 Trello

Trello is a web application designed to organize Kanban-style lists. It is used for many

projects whose completion is divided into many tasks.

1.4.2 Google Calendar

6

Google Calendar is a web app that lets the user keep track of events. It is integrated

with Gmail, as well as having a mobile app that runs on Android and iOS. Users’ events can

be categorized into several groups, with the ability to toggle each groups’ visibility.

1.4.3 Kanboard

Kanboard is similar to Trello in that it lets users manage Kanban lists. However,

Kanboard is free and open source, and can be easily deployed locally.

1.5. Functions/Module

1.5.1 Activities

Everything the user does will be recorded as a unit of activity. Each activity is recorded with

the date and time that the user has finished an activity, and has a short title or description.

1.5.2 Task List

A list of activities to be done. They may or may not have time and date deadlines. Unlike

traditional to-do apps, an entry’s completion must have an activity associated with it.

Therefore, in order to mark an entry as done, the user must record an associated activity.

1.5.3 Projects

A set of tasks that are necessary to complete a certain goal. This may or may not have

deadlines. A project can be marked as complete only if the tasks contained within are

completed.

1.5.4 Dashboard

If implemented, this will show a summary of the user’s completed activities, tasks to be done,

current projects, or anything else the user needs to gauge their activity. The view can vary, for

example there may be a graph showing daily completed activities for the week.

1.6. Tools

1.6.1 PHP

7

PHP is one of the languages that is ​​used in programming. In our project, PHP will be used

for:

1. The back-end that processes user requests

2. A templating system which will be used to prepare the final display

1.6.2 MariaDB

MariaDB is one of the tools that is used for databases. In our project, we use MariaDB

because:

1. MariaDB is a database engine compatible with MySQL

2. MariaDB is a database that is more actively maintained

1.6.3 Figma

Figma is a popular tool often used for prototyping and general graphic design. It runs on the

web and has collaboration features. In our project, Figma is used because:

1. Has convenience features such as frames and components, to make GUI prototyping

easier

2. Able to collaborate with other team members for reviewing

3. Has a rich vector graphics editor

1.7. Resources

1.7.1 NGINX

NGINX is one of the resources that is used for servers. In our project, we use NGINX

because:

1. It is easy to configure than Apache

2. It is a server that doesn’t take a lot of resources

1.7.2 Ubuntu and Windows

Ubuntu and Windows are the resources that are used for the Operating System. In our project,

we used Ubuntu and Windows because:

1. Ubuntu and Windows are operating systems that can be optimized for the server’s

needs.

8

2. Ubuntu is one of the operating systems that is open-sourced and can be downloaded

for free.

3. Windows is one of the operating systems commonly installed and used on many

computers, laptops, and notebooks.

1.7.3 Heroku

Heroku is a cloud application platform that offers hosting of web applications in various

programming languages and environments. We are considering using Heroku for deployment

due to its easy setup.

1.8. Risk Analysis

1.8.1 Software

- Privacy concerns - Because the project runs as a web app using a server, the user's

daily activities are logged on the server. This may include potentially sensitive and

private information. Solutions include:

- Make the project open source and self-hostable. The downside to this

approach is that most people do not have the technical understanding needed

to self-host the project. However, this approach can make it possible for

anyone who has the appropriate skills to run instances for their friends.

- Increase security of the web application by fixing various vulnerabilities and

reducing vectors of attack.

- Resource usage - As a web application, it requires more resource usage than a regular

desktop application. Resource usage varies depending on the browser. It also requires

an internet connection, except in cases where the user self-hosts the application.

1.8.2 Tools

Programming Language

PHP has some risk/weakness that might affect the software as listed below [2]:

1. Not sharing resources between process, leads to high resource usage, and also more

difficult to use on larger system

2. Flexibility.

9

- Maintaining a PHP project might be hard due to differences in understanding

of the code for each person

- PHP has too many external libraries that making it worse to maintain

3. Extension Dependent. Processes on PHP sometimes rely on external extension

libraries that makes the connection between it and the database slower. Although there

is a feature called persistent connection that boosts the connection, ensuring the

performance won’t be possible compared to other languages.

Database

MariaDB has some risk/weakness that might affect the software as listed below [3]:

1. Liable to bloating, leading to slower performance due to the increasing size of central

IDX log file after protracted use.

2. Slow caching.

1.8.3 Resources

Server

If we misconfigure the NGINX server, it will become a risk/weakness that might affect the

software as listed below [4][5]:

1. Off-by-slash misconfiguration, making it vulnerable to path traversal

2. Unsafe variable use, might lead to XSS, HttpOnly-protection bypass, information

disclosure, and RCE

3. Usage of $uri or $document_uri instead of $request_uri, might lead to a CRLF

injection

4. merge_slashes set to off, might result in vulnerable to local file inclusion

Operating Systems

Ubuntu and Windows have some risk/weakness that might affect the software as listed below

[6][7]:

1. Ubuntu

- Software and hardware incompatibility. Some user might cannot use this app on

Ubuntu OS because the incompatibility between their hardware and Ubuntu OS,

although Windows OS might solve this weakness

10

- There are other Linux distributed OS that is better and use lower system requirement

like Linux Mint OS and Debian OS.

2. Windows

- High resource system requirements, same problem with the Ubuntu OS

- Poor Security

- Virus Susceptibility

Cloud
Heroku have some risk/weakness that might affect the software as listed below [13]

- Poor network performance

- High inbound and outbound latency

- High chance of the dynos being inaccessible due to various reason

11

CHAPTER II

PROJECT MANAGEMENT

2.1 Members

2.1.1 Richie Yoseph Wijaya

In this project, Richie will responsible for:

1. Creating the report

2. Reviewing/Maintaining the report

3. Reviewing the code/program

4. UI design

5. Drafting the project agreement

2.1.2 Rodriguez Breil Soenoto
In this project, Rodriguez will responsible for:

1. Creating the report

2. Creating the code/program

3. Maintaining the code/program

4. UI design

5. Drafting the project agreement

12

2.2 Project Management
Structure
For the project’s execution, the team structure is as follows:

13

CHAPTER III

PROJECT PLAN

3.1. Project Schedule
Our project’s schedule from initial planning, prototyping, design and implementation is

roughly as follows.

Month Oct

Week 1 2 3 4

Milestones Progress
Report

Alpha

Richie Initial Planning Implement
Activity API

Midterms Make
Suggestions

API Testing GUI Testing

Review Report

Breil GUI Design

API Prototyping Make Report Implement
Activity GUI

Month Nov

Week 1 2 3 4

Milestones Beta

Richie Implement Task
API

Make
Suggestions

Implements
Project API

Make
Suggestions

GUI Testing
Surveying and
Beta Testing

GUI Testing

Breil Make
Suggestions

Make
Suggestions

API Testing Implement Task
GUI

API Testing Implement
Project GUI

14

Month Dec

Week 1 2 3 4

Milestones Progress
Report

Release
Candidate

Richie Implement
Authentication

API

Review Report GUI Testing

Make Report Make
Suggestions

Breil Make
Suggestions

Implement
Authentication

GUI

Final
Adjustments
and Tweaks

API Testing Implement
Dashboard GUI

Month Jan

Week 1 2 3

Milestones Finishing

Richie Make Report Review Report Finals

Breil

Final Adjustments
and Tweaks

15

3.2 Risk Analysis

Risk Likelihood Impact Retire
cost

Priority Mitigation

1 Suboptimal code

may affect

performance

3 5 4 192 Ensure each component of

project design is planned

in order to reduce the

chance of needing to

quickly patch in

suboptimal code.

2 Implementation

may be hindered

by inadequate

understanding of

PHP.

5 8 4 72 Learn from tutorials and

documentation, then apply

to the project accordingly.

3 Web applications

may have a

higher chance of

not being secure

5 5 6 216 Mitigate vulnerabilities by

using tools such as

OWASP ZAP (a security

testing tool) to check for

application errors caused

by malformed input and

random queries.

4 Difficulties in

testing various

aspects of the

project

2 1 1 90 Use tools such as

Postman (for testing

HTTP API) and Ngrok (A

web proxy to make

localhost accessible) to

make both API and GUI

testing convenient.

16

3.3 Project Design

The design of our project can be illustrated as follows:

3.3.1 Use Case

- User

The user may add, edit, update, finish, or delete their activity, task, or project.

- Administrator

The administrator may add features, update features, maintain the server, or maintain

the database.

17

3.3.2 State

The application consists of several states that can be reached by either the user or by the

administrator. They are essentially pages that can be accessed after reaching a certain state.

3.3.3 Activity

This illustrates the path in which the application can be navigated. Once logged in, the user

may log his or her various activities, while the administrator can manage accounts and the

server itself.

18

3.3.4 Deployment

In the deployment diagram, we can see that all of the devices are connected to the server by

LAN, Mobile Data, or Wi-Fi. The project may be accessed by multiple users at the same

time.

3.3.5 Component

The component diagram visualizes at a glance the interfaces and the components of the

application.

19

3.3.6 Class

The class diagram outlines more closely how the structure is to be implemented in the final

product.

20

CHAPTER IV

IMPLEMENTATION

4.1 Overview

The application will be implemented in the form of a cloud-based web application. It will be

written in PHP, and will offer both a GUI for the user-facing side, as well as an API to help

with development.

4.1.1 API

The API will be a REST-like API accessible through a URL prefixed with “api/”. In this

project, the objects accessed through the API are represented as JavaScript Object Notation

(JSON). This allows the object to be easily parsed by most applications. Due to its

conciseness, it is also preferable compared to Extensible Markup Language (XML).

Our API implements a form of Hypermedia as the Engine of Application State

(HATEOAS)[12], which allows the API to be self-documenting through links provided in the

object output. The advantage of this approach is that it reduces the need for hard-coded

URLs, therefore making non-breaking API changes easy to perform.

Each URL can have operations done by sending the appropriate HTTP requests:

● GET: Fetches information about an object[8].

● PUT: Creates or updates an object’s information[9].

● DELETE: Deletes the object from the server[10].

● POST: Creates a new object on the server[11]. In this project, due to the fact that

POST is more widely supported than PUT (for example, forms only support sending

GET and POST), we implement Idempotency Tokens. They are identifiers that are

used to prevent duplicate requests, such as in the case of multiple retries during a slow

connection. It is used such that multiple requests in succession will only change the

state of the application once, hence it is idempotent.

4.1.2 GUI

As with every other web application, the GUI will be implemented primarily in HTML. CSS

is used to define the look and feel of the application, while Javascript is used to implement

21

various functionality that enhances the application (such as AJAX support and single page

functionality). The look and feel of the application is prototyped using Figma, and will serve

as a reference for full implementation.

The GUI facilitates the user or the administrator to carry out their various needs

according to the Activity and State diagrams shown in Chapter III. It will be designed such

that it will be easy for them to access the various functionality of the application.

4.2 Activities

In this application, activities are data added by the user to note that he or she has done

something in a day. The information contained within include a short summary of the activity

(“subject”), the time and date in which the activity was committed, an optional detailed

summary of the activity (“description”), as well as an optional category in which to place the

activity in.

4.2.1 API

A working Activity API is implemented, and can be used to perform create, read, update and

delete (CRUD) operations on a single Activity object. The Activity object itself has three

forms:

● As a PHP object in the server;

● As a database table;

● As a JSON object retrieved by the user.

The API translates the object between these three forms as needed, and can be operated on by

the user using the methods described in section 4.1.1. The URL for manipulating activities is:

● /api/activity: For manipulating an activity or to create a new activity

● /api/activity/<id>: For manipulating a single activity (editing or deleting)

We have tested the API with the help of the Postman software, an application designed to

ease testing web API’s. Below is a screenshot from one of the test sessions. The custom

“everyday.tasks” domain shown is not a real public domain; it redirects to the test system’s

localhost.

22

4.2.2 GUI

The prototype of the activities page is as shown below:

Mockup Desktop Mobile

Main
Activity
page

23

Add New
Activity

The implementation is done in a hybrid way. If the activity edit and delete URLs are

loaded in isolation: “/activity/<id>/edit” or “/activity/<id>/delete”, the page loaded is the

static dialog written only in HTML. However if it is accessed through the main “activity”

page, then it is implemented inside of the site’s Javascript.

The advantage to this approach is that users unable to load Javascript will still be able

to perform activity logging, editing and deleting. Meanwhile, regular users will have a

smoother experience in using the website, since the dialog does not need to be loaded as a

separate page. However, the disadvantage is that since we are not using a specialized library

for single page applications (such as React), the Javascript and the HTML code need to be

updated separately, which adds complexity to the code.

The static version of these pages are written in PHP and HTML, and any requests

made will go directly to the backend. However, the Javascript version will create requests to

the EverydayTasks API, and upon a successful request, the page will update itself to reflect

the new state of the database.

Implement Desktop Mobile

Main
Activity
page

(To be implemented)

24

Add New
or Edit
Activity

(To be implemented)

Delete
Activity

(To be implemented)

4.3 Tasks

Tasks are a list of activities that the user plans to perform at some time in the future. They

will have a short summary describing the task (“subject”), and optionally include longer

descriptions (“description”) as well as an optional category.

4.3.1 API

A working Tasks API is implemented, and can be used to perform create, read, update and

delete (CRUD) operations on a single Task object. Like the Activity object, the Task object

also has three forms:

25

● As a PHP object in the server;

● As a database table;

● As a JSON object retrieved by the user.

The URL for manipulating tasks are:

● /api/task: For manipulating a task or to create a new task

● /api/task/<id>: For manipulating a single task (editing or deleting)

● /api/task/<id>: For finishing a single task. Sending a POST request to this URL will

complete the task by adding an activity, and then associating it with the task.

As before, we have tested this API with Postman. Below is a screenshot from one of the test

sessions.

26

4.3.2 GUI

Like the activity page, the implementation is planned to be done in a hybrid way.

However, we were not able to implement the hybrid page in time for integration testing and

the eventual final version. The following is the implementation of the Tasks GUI:

Implement Desktop Mobile

Main
Tasks
page

(To be implemented)

Add New
or Edit
Task

(To be implemented)

Delete
Task

(To be implemented)

Finish
Task

(To be implemented)

27

4.4 Projects

Projects are activities the user plans to perform gradually, and is made up of a set of Tasks.

In order to complete a Project, the user must finish all of the Project’s Tasks. In addition to a

Task list, the Projects will contain a short summary (“subject”) and more detailed info

(“description”) of its own.

4.4.1 API

A partially working Projects API has been implemented so far, and can be used to operate on

Project objects, which also comes:

● As a PHP object in the server;

● As a database table;

● As a JSON object retrieved by the user.

The URL for manipulating projects are:

● /api/projects : For manipulating a task or to create a new task

● /api/projects /<id>: For manipulating a single task (editing or deleting)

We were unable to test the projects API in time for integration testing and release, so it is not

included at this moment.

4.4.2 GUI

The GUI is planned, however we were unable to implement it in time for testing and release.

The prototype of the projects page is as shown below:

Mockup Desktop

Main
Projects
page

28

CHAPTER V

TESTING METHODS

5.1 Introduction

This part is intended to define EverydayTasks’ testing methods and infrastructure. The

following will be defined here: test objectives, scope, scheduling, risks and approach. We will

also define deliverables (products to be tested) at what stages of testing, and what will be the

scope of testing.

5.1.1 Objectives

EverydayTasks is a web application that makes it possible for users to log their daily activities

using an intuitive user interface. It also makes it possible for developers to easily get their

daily activity data using its API. It is written in PHP, using a MySQL or MariaDB-powered

database.

The application needs to be tested to ensure proper functionality, fulfillment of requirements

and that the user’s needs are met. Testing will be done by the developer as well as the team

members. In order to ensure EverydayTasks will be functional for the end-user, a testing

methodology will have to be created. Testing will be divided into several stages, according to

the project’s set milestones. We will use common terminology for test releases: alpha testing,

beta testing, and a release candidate.

Alpha testing will be the internal testing of the web application performed by the team

members and developers. It will be used to evaluate functionality of core features. Beta

version of this test will test the user experience at an early stage, and may involve a test group

consisting of a few people. The final version (or release candidate) of this test will be the final

testing of the app, after most features have already been implemented, and is used to prepare

the web application for release.

29

5.1.2 Team Members

Resource Name Role

Richie Yoseph Wijaya Test Manager / Tester

Rodriguez Breil Soenoto Project Leader / Tester

5.1.3 Scope
By the end of the alpha stage, the application will have all core requirements. The core

requirements are that the user will be able to:

1. Log an activity

2. Edit and delete the activity

3. View activities for today and also past activities that have been logged.

By the end of the beta stage, additional requirements will have to be met, which include:

1. Create a task

2. Edit the description, time of the task

3. Delete a task

4. Finish a task by logging its associated activity

5. View all finished and unfinished tasks

Since the user base is currently small, load testing won’t be considered during the initial

stages. However, as the user base grows, load testing will have to be done at some point. Load

testing is intended to test the scalability of the application, and can be done using

benchmarking tools.

Security testing will also be considered here, including input validation and fuzzing. It will be

done at the user level, the application level and the database level to ensure no obvious

vulnerabilities are present.

30

5.2 Assumptions / Risks

5.2.1 Assumptions

This section lists assumptions that are made specific to this project.

1. Product delivery will be in a form that can be committed to the GitHub repository.

2. Core team members have the same setup, including server configuration, database

configuration and local host domains.

5.2.2 Risks

Risk Impact Triggering Mitigation Plan

1 Scope creep – as testers

become more familiar

with the tool, they will

want more functionality.

High Delays in

implementati

on date

Considering each feature

request extra carefully, will

stick to initial requirements

2 Feature and design

requirement changes

may negate any test

cases written up to that

point

High Loss of all

test cases

Backup database before

upgrade and merge it in

afterwards

3 Delivery is irregular due

to other assignments

and tasks

Medium Product did

not get

delivered on

schedule

Reschedule as needed, or

postpone features until the

next version.

31

5.3 Test Approach

Testing will be done on both the API and the front-end. At present, testing is done manually.

However test cases will be built for the various functionality in the app.

5.3.1 Test Automation

Test automation is currently employed for unit testing PHP model functions, and is currently

only available to test the Activity object. We plan to create unit tests for the Tasks and

Projects object, but we were not able to implement them in time. We use the PHPUnit library

to create test cases for the application.

The unit test uses a separate database with a structure identical to that of the

production database. Each time the unit testing session is started, this database is cleared and

rebuilt to ensure a clean environment. Currently, we are only testing the Activity object and

adding users into the database.

The Activity test suite includes: creating an Activity object, adding it to the database,

as well as testing setting subject and description in a sanitized way (such that it is not prone to

cross-site scripting / XSS attacks). For the Users test suite, it will test creating a User object

and adding it into the database, as well as setting a sanitized username and a valid password.

More unit tests are planned to be written as the application grows. Below is the result of the

unit testing:

32

5.3.2 Test Environment

The test environment will use Postman for API testing, and Firefox or Chrome for front-end

testing. As mentioned, unit testing will utilize PHPUnit using a separate database. The PHP

version used for PHPUnit should be the same version as used in the actual application, a

minimum of PHP 8.0 (which is the latest stable version at the time of writing). The database

used for the test runs on the same engine as the actual application as well, using MySQL or

MariaDB.

33

5.4 Planned Deliverables

Deliverable For Date / Milestone

Test Plan (Alpha) All Team Members 13 Nov 2021

Traceability Matrix Test Manager 13 - 14 Nov 2021

Test Results All Team Members 14 Nov 2021

Test Status report Project Leader 14 & 19 Nov 2021

Metrics All team members

Deliverable For Date / Milestone

Test Plan (Beta) All Team Members 27 Nov 2021

Traceability Matrix Test Manager 27 - 28 Nov 2021

Test Results All Team Members 28 Nov 2021

Test Status report Project Leader 28 Nov & 3 Dec 2021

Metrics All team members

Deliverable For Date / Milestone

Test Plan (Release

Candidate?)

All Team Members,

Participant

12 Dec 2021

Traceability Matrix Test Manager 12 - 14 Dec 2021

Test Results All Team Members 14 Dec 2021

Test Status report Project Leader 14 & 18 Dec 2021

Metrics All team members,

Participant

34

CHAPTER VI

USER MANUAL

6.1 Introduction

This User Manual was created so that users know how to use EverydayTasks and also

the features contained in it. This user manual can also be used as a guide in testing the

EverydayTasks application as well as filling out surveys or test sheets for the future

development of the EverydayTasks application.

6.2 Basic Concepts

Activities are details of one activity carried out in one day. The contents are when the

activity was carried out (automatically filled), activity title, description (if needed) and

category (if needed). For example: when a User completes a class assignment, or after

exercising, the User can record it through this feature.

Tasks are activities that are planned to be carried out at a time. Tasks can have a

deadline or not. There is a title, description (optional) and category (optional). In

EverydayTasks, there is a difference between deleting a task and completing a task:

● Completing a Task will create an Activity that declares the completion of the Task,

and that Activity will be associated with the Task. Users can access related Activities

and Tasks (needs to be implemented).

● Deleting the Task will actually delete the Task. Completed tasks cannot be deleted

(needs to be implemented).

Projects (needs to be implemented) is a list of Tasks that have the same topic. For

example, writing a book can be made a Project. The project can have a Task for writing

chapter 1, a separate Task for writing chapter 2, and so on.

Each Activity, Task and Project is owned by a User. A User can only see the

Activities, Tasks and Projects they have.

35

6.3 Operations

“Login” Page

1. The user opens the application via the given link.

2. Users can press the “do so here” link to go to the “register” page and register their

account.

3. If the user already has an account, the user can fill in the name and password in the

text box provided and press the "Enter" button to log in.

36

“Register” Page

1. Users can fill in the name they want to use when logging in and operating the

application in the text box provided.

2. Users can fill in the password they want to use when logging in in the text box

provided.

3. The user can press the “Enter” button to register the account.

37

“Activity” Page - General

1. Users can go to the activity page in 2 ways, either automatically after logging in, or

manually by pressing the “Activities” button.

2. Users can see the correct activity page, namely the name that matches the one entered

on the “Login” page, the date that matches the date of that day, and the activity for

that day.

3. Users can press the “Logout” button to return to the “Login” page.

38

“Activity” Page - Add/Edit Activity

1. Users can press the “Add” button to add an activity for the day, or the “Edit” button to

change an existing activity.

2. Users can fill in the title of the activity in the text box provided.

3. Users can fill in a description of the activity in the text box provided, or leave it blank.

4. The user can select a category from the activity in the drop-down box below, or leave

it blank. There are various categories to choose from, namely "-- No category --",

"Friends", "Work", "College", and "Play".

5. Users can press the "Cancel" button to cancel the addition/change of activities, or the

"Submit Query" button to save the addition/change of activities.

6. Users can see the activities that have been added or have been changed according to

the user's wishes. The time is listed next to their activity.

39

“Activity” Page - Delete

1. Users can press the “Delete” button to delete an activity for the day.

2. Users can press the "Cancel" button to cancel the deletion of the activity, or the

"Delete" button to confirm the deletion of the activity.

40

“Activity” Page - All

1. Users can press the "View all activities" button to display all activities that have been

added both on that day and the previous day.

2. Users can use the buttons on the page according to the functionality described in the

“Activity” Page - Add/Edit & “Activity Page - Delete.

41

“Tasks” Page - General

1. Users can go to the tasks page by pressing the “Tasks” button.

2. Users can see the correct tasks page, namely the name that matches the one entered on

the “Login” page and the tasks that have not been done. Tasks that have not been

completed and have passed that time will be pink, while those that have not passed

that time will be white.

3. Users can press the “Logout” button to return to the “Login” page.

42

“Tasks” Page - Add/Edit Tasks

1. Users can press the “Add” button to add an unfinished task, or the “Edit” button to

modify an existing task.

2. Users can fill in the title of the task in the text box below.

3. Users can fill in the description of the task in the text box below, or leave it blank.

4. Users can choose the deadline given to the task through the box provided, or leave it

blank. On some devices, the time format is 12-hour so users can enter the time

according to the 12-hour format (00.00 - 11.59 AM/PM).

5. The user can select a category from the task in the drop-down box below, or leave it

blank. There are various categories to choose from, namely "-- No category --",

"Friends", "Work", "College", and "Play"

6. Users can press the “Cancel” button to cancel the addition/change of tasks, or the

“Submit Query” button to save the addition/change of tasks.

7. Users can see the tasks that have been added or that have been changed according to

the user's wishes.

43

"Tasks" Page - Finish

1. Users can use the "Finish" button to complete a task that has already been done.

Completed tasks will be recorded as activities for the day.

2. Activities logged by tasks cannot be deleted directly on the "Activity" Page. If the

user wants to delete the activity, then the user can press "Tasks" -> "View all tasks"

button and delete the related activity.

44

“Tasks” Page - Delete

1. Users can press the “Delete” button to delete today's task.

2. Users can press the "Cancel" button to cancel the deletion of the task, or the "Delete"

button to confirm the deletion of the task.

45

“Tasks” Page - All

1. Users can press the "View all tasks" button to display all the added tasks, both those

that have been done and those that have not been done.

2. Users can use the buttons on the page according to the functionality described in the

"Tasks" Page - Add/Edit, "Tasks" Page - Delete, and "Tasks" Page - Finish.

46

CHAPTER VII

USER SURVEY

7.1 Questions

The following is a copy of the survey questions:

7.1.1 Application Functionality
For each row, check if all of the conditions apply. Based on the result, write True/False. If you

did not attempt a row, write “Not attempted”.

Pre-condition Condition Post-condition True/False/
Not
attempted

User is in the login
page (/login)

User clicks on the do
so here link.

User is led to the
registration page
(/register)

User is in the login
page (/login) and owns
an account

User has filled out all
necessary information
on the page before
clicking Enter button

User is successfully
logged in

User is in the
registration page
(/register)

User has filled out all
necessary information
on the page before
clicking Enter button

User is successfully
registered and led to
the login page (/login)

User is in the
Activities page
(/activity) or Tasks
page (/task)

User clicks on the
Activity button in the
main menu

User sees only the
activities logged for
today (/activity)

User is in the
Activities page
(/activity)

User clicks on the
Add button

User is presented with
a form that allows
him/her to create an
activity (/activity/add)

User is in the
Activities page
(/activity)

User clicks on the
Edit button on an
activity.

User is presented with
a form that allows
him/her to edit an
existing activity

47

(/activity/edit)

User is in the
Activities page and
have an activity
(/activity)

User clicks on the
Delete button on an
activity.

User is presented with
a confirmation dialog
for deleting an existing
activity
(/activity/delete)

User is in the
Activities page
(/activity)

User clicks on the
View all activities
link

User is taken to a page
listing all activities
ever recorded
(/activity/all)

User is in the
Activities page
(/activity) or Tasks
page (/task)

User clicks on the
Logout button

The user is logged out
and taken back to the
login screen (/login)

User has the add or
edit activity dialog
open (/activity/add,
/activity/edit)

User is able to enter
the correct subject and
description in the
proper boxes

User has the add or
edit activity dialog
open (/activity/add,
/activity/edit)

User is able to choose
a suitable category
from the drop down
box

User has the add or
edit activity dialog
open (/activity/add,
/activity/edit)

User clicks on the
Cancel button

The dialog closes and
the user is returned to
the Activities page

User has the add or
edit activity dialog
open (/activity/add,
/activity/edit)

User clicks on the
Submit Query button

The dialog closes, the
user is returned to the
Activities page with
his/her newly-created
activity

User is in the
Activities page
(/activity)

Activity data is correct
and proper

User is in the
Activities page
(/activity) or Tasks
page (/task)

User clicks on the
Tasks button

User is taken to a page
listing unfinished tasks
(/task)

User is in the Tasks
page (/task)

User clicks on the
Add button

User is presented with
a form that allows
him/her to create a

48

task (/task/add)

User is in the Tasks
page and have an
unfinished task (/task)

User clicks on the
Finish button on a
task

User is in the Tasks
page and have an
unfinished task (/task)

User clicks on the
Edit button on a task.

User is presented with
a form that allows
him/her to edit an
existing
task(/task/edit)

User is in the Tasks
page and have an
unfinished task (/task)

User clicks on the
Delete button on a
task.

User is presented with
a confirmation dialog
for deleting an existing
task (/task/delete)

User is in the Tasks
page (/task)

User clicks on the
View all tasks link

User is taken to a page
listing all tasks ever
recorded (/task/all)

User has the add or
edit task dialog open
(/task/add, /task/edit)

User is able to enter
the correct subject and
description in the
proper boxes

User has the add or
edit task dialog open
(/task/add, /task/edit)

User is able to choose
the deadline with the
clock box

User has the add or
edit task dialog open
(/task/add, /task/edit)

User is able to choose
a suitable category
from the drop down
box

User has the add or
edit activity dialog
open (/task/add,
/task/edit)

User clicks on the
Cancel button

The dialog closes and
the user is returned to
the Activities page

User has the add or
edit task dialog open
(/task/add, /task/edit)

User clicks on the
Submit Query button

The dialog closes, the
user is returned to the
Tasks page with
his/her newly-created
task

User is in the Tasks
page (/task)

Task data is correct
and proper

49

7.2.2 User Satisfaction
Check the answer that applies.

Statement Disagree Slightly
Disagree

Does not
apply

Slightly
agree

Agree

The user interface is
functional and easy to use

The features provided fit
your needs

The color combinations used
are pleasant

All parts of the user interface
are laid out comfortably

7.2.3 Suggestions

“Thank you for using our EverydayTasks App. Every feedback from you is precious for

further development of our app in the future.”

7.2 Results

The survey was conducted through Google Forms between 15 December until 17 December

2021. The number of responses received as of 13:38, 17 December 2021 was 21. The results

are shown as follows, grouped by each aspect of the app.

50

7.2.1 Functionality

From 21 responses, 21 respondents said that they successfully logged in with their

account. This number also occurred on the register part, as well as on the part of adding

activities/tasks and the proper view of the page.

From 21 responses, 19 respondents said that they can delete the activity of their

choosing, while 1 respondent said that they didn’t try the functionality, and another 1

respondent said that they can’t delete the activity of their choosing, possibly because they

choose to delete an activity that is created by tasks page and tried to delete it from activity

page.

51

From 21 responses, 18 respondents said that they can log out using the “Logout”

button, while 3 respondents said that they didn’t try the functionality. There are 2 possibilities

of why this could happen

a. The user wasn’t interested on this feature, or

b. The user didn’t need to log out from their account because of their personal

use, which is more relevant then the first possibility.

7.2.2 Satisfaction

From 21 responses, 21 respondents said that they are very satisfied with the layout in

the app. This number also occurred on the satisfaction based by the combination of the color

in the app.

52

From 21 responses, 16 respondents said that they can access the app easily, while 5

respondents said they can access the app with a small problem, possibly because this app

doesn’t very compatible with android

From 21 responses, 18 respondents said that the app’s feature is suitable for their

needs, while 3 respondents said that the app’s feature is less suitable for their needs. This

response is very valuable to us so that we can improve the app more in the future.

7.2.3 Suggestions

We receive some suggestions along with compliments for the app, and this suggestion

is valuable to us for knowing what the user really needs and for future improvements on the

app. Here we include some of the noticeable suggestions for the app:

a. Adding a calendar widgets to the app,

53

b. Make the app compatible with android, and

c. Adding an option to use a custom category for activity and task.

We also notice a minor “bug” mentioned by the respondent, which is that there are

some conditions where the user cannot delete an activity made by task directly from the

activity page, and we will discuss that matter in the future.

54

CHAPTER VIII

CONCLUSION

8.1 Conclusion

EverydayTasks is the first application that we created in collaboration. Our

application is running properly and got a lot of good reviews, along with some suggestions

for the application’s further development. In our first project, the lesson we learned is to

make a good schedule for our project, so that our goals are reached and the application is

working as it's supposed to be. We need to know what is the most important for our project,

and get some further improvement later on if we have enough time to do it.

8.2 Resources

We provided you with the link to our progress

● “Web Hosting” for the Application (ENG)

https://everydaytasks.000webhostapp.com/login/

● “Youtube” for Video Presentation

https://www.youtube.com/watch?v=Q55YoTAI-gg

● “Google Slide” for our Presentation (ENG)

https://docs.google.com/presentation/d/10wrm3gajMED1a2LFfRC09JqrioBk4_Ef5C

VIMnENZB8/edit?usp=sharing

● “Google Docs” for Application’s User Manual (IDN)

https://docs.google.com/document/d/1Esuq6QBxR2KO1oe6pgmKMD3NHNpcP1mB

IXhEIb82D9U/edit?usp=sharing

● “Google Form” for Application’s Survey (IDN)

https://forms.gle/Lo8TYuZocTGUKR2s9

● “Google Sheet” for Survey’s Result (IDN)

https://docs.google.com/spreadsheets/d/1p9oN4H2yEU0aTmPbBnhaacqquW1WWxz

FMPH5s0vTFuk/edit?usp=sharing

● “Github” for Application’s Back End Progress (ENG)

https://github.com/rbsoen/EverydayTasks

55

https://everydaytasks.000webhostapp.com/login/
https://www.youtube.com/watch?v=Q55YoTAI-gg
https://docs.google.com/presentation/d/10wrm3gajMED1a2LFfRC09JqrioBk4_Ef5CVIMnENZB8/edit?usp=sharing
https://docs.google.com/presentation/d/10wrm3gajMED1a2LFfRC09JqrioBk4_Ef5CVIMnENZB8/edit?usp=sharing
https://docs.google.com/document/d/1Esuq6QBxR2KO1oe6pgmKMD3NHNpcP1mBIXhEIb82D9U/edit?usp=sharing
https://docs.google.com/document/d/1Esuq6QBxR2KO1oe6pgmKMD3NHNpcP1mBIXhEIb82D9U/edit?usp=sharing
https://forms.gle/Lo8TYuZocTGUKR2s9
https://docs.google.com/spreadsheets/d/1p9oN4H2yEU0aTmPbBnhaacqquW1WWxzFMPH5s0vTFuk/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1p9oN4H2yEU0aTmPbBnhaacqquW1WWxzFMPH5s0vTFuk/edit?usp=sharing
https://github.com/rbsoen/EverydayTasks

● “Figma” for Application’s Front End Progress (ENG)

https://www.figma.com/file/15PxZqMsq2llbRSofov6oj/EverydayTasks

● “Trello” for our Project Management (ENG)

https://trello.com/b/yOYBjY8p/group-13-everydaytasks

56

https://www.figma.com/file/15PxZqMsq2llbRSofov6oj/EverydayTasks
https://trello.com/b/yOYBjY8p/group-13-everydaytasks

REFERENCES

1. M. Chappal. “Personal Productivity Guide: How to Maximize Your Time &

Productivity Levels”. Friday. [Online] Available:

https://friday.app/p/personal-productivity

2. D. Pham. “PHP – Strengths and Weaknesses”. (Jun. 13, 2020). Ryadel. [Online]

Available:

https://www.ryadel.com/en/php-programming-language-strengths-weaknesses/

3. S. Bocetta. “Comparing 3 open source databases: PostgreSQL, MariaDB, and

SQLite”. (Jan. 15, 2019). Opensource.com. [Online] Available:

https://opensource.com/article/19/1/open-source-databases

4. Crowdsource. “Common Nginx misconfigurations that leave your web server open to

attack”. (Nov. 10, 2020). Detectify. [Online] Available:

https://blog.detectify.com/2020/11/10/common-nginx-misconfigurations/

5. OWASP ZAP. “Alerts”. [Online] Available:

https://www.zaproxy.org/docs/desktop/start/features/alerts/

6. A. Ivankov. “Ubuntu Operating System: Advantages and Disadvantages” (Jun. 23,

2020). Profolus. [Online] Available:

https://www.profolus.com/topics/ubuntu-operating-system-advantages-and-disadvanta

ges/

7. RJ Systems. “Windows pros and cons”. (Aug. 2, 2017). [Online] Available:

http://www.rjsystems.nl/en/3200.php

8. MDN Contributors. “GET - HTTP | MDN”. (Aug. 13, 2021). Mozilla Developer

Network. [Online] Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET

9. MDN Contributors. “PUT - HTTP | MDN”. (Aug. 13, 2021). Mozilla Developer

Network. [Online] Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT

10. MDN Contributors. “DELETE - HTTP | MDN”. (Aug. 13, 2021). Mozilla Developer

Network. [Online] Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE

11. MDN Contributors. “POST - HTTP | MDN”. (Aug. 13, 2021). Mozilla Developer

Network. [Online] Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

57

https://friday.app/p/personal-productivity
https://www.ryadel.com/en/php-programming-language-strengths-weaknesses/
https://opensource.com/article/19/1/open-source-databases
https://blog.detectify.com/2020/11/10/common-nginx-misconfigurations/
https://www.zaproxy.org/docs/desktop/start/features/alerts/
https://www.profolus.com/topics/ubuntu-operating-system-advantages-and-disadvantages/
https://www.profolus.com/topics/ubuntu-operating-system-advantages-and-disadvantages/
http://www.rjsystems.nl/en/3200.php
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

12. REST API Tutorial. “HATEOAS Drived REST APIs”. (Oct. 10, 2021). [Online]

Available: https://restfulapi.net/hateoas/

13. D. Taylor. “Heroku vs AWS: What is the Difference?” (Oct. 6, 2021). Guru99.

[Online] Available: https://www.guru99.com/heroku-vs-aws.html

58

https://restfulapi.net/hateoas/
https://www.guru99.com/heroku-vs-aws.html

